欧美一线不卡在线播放,香蕉视频在线免费,亚洲国产精品久久久久秋霞影院,www.kksebo.com,aⅴ一区二区三区无卡无码,日韩成人免费一级毛片,可以免费观看的一级片

小學(xué)歸納法的奧數(shù)計(jì)算試題

時(shí)間:2021-06-10 13:03:01 試題 我要投稿

小學(xué)歸納法的奧數(shù)計(jì)算試題

  1.用數(shù)學(xué)歸納法證明"當(dāng)n為正偶數(shù)為xn-yn能被x+y整除"第一步應(yīng)驗(yàn)證n=__________時(shí),命題成立;第二步歸納假設(shè)成立應(yīng)寫成_____________________.

小學(xué)歸納法的`奧數(shù)計(jì)算試題

  2.數(shù)學(xué)歸納法證明3能被14整除的過程中,當(dāng)n=k+1時(shí),3應(yīng)變形為____________________.

  3.數(shù)學(xué)歸納法證明1+3+9+…+3

  4.求證n能被9整除.

  答案:

  1.x2k-y2k能被x+y整除

  因?yàn)閚為正偶數(shù),故第一值n=2,第二步假設(shè)n取第k個(gè)正偶數(shù)成立,即n=2k,故應(yīng)假設(shè)成x2k-y2k能被x+y整除.

  2.25(34k+2+52k+1)+56·32k+2

  當(dāng)n=k+1時(shí),34(k+1)+2+52(k+1)+1=81·34k+2+25·52k+1=25(34k2+52k+1)+56·33k+2

  3.證明(1)當(dāng)n=1時(shí),左=1,右=(31-1)=1,命題成立.

  (2)假設(shè)n=k時(shí),命題成立,即:1+3+9+…3k-1=(3k-1),則當(dāng)n=k+1時(shí),1+3+9+…+3k-1+3k=(3k-1)+3k=(3k+1-1),即n=k+1命題成立.

  4.證明(1)當(dāng)n=1時(shí),13+(1+1)3+(1+2)3=36能被9整除.

  (2)假設(shè)n=k時(shí)成立即:k3+(k+1)3+(k+2)3能被9整除,當(dāng)k=n+1時(shí)

  (k+1)3+(k+2)3+(k+3)3=k3+(k+1)3+(k+2)3+9k2+9k+27=k3+(k+1)3+(k+2)3+9(k2+k+3)能被9整除

  由(1),(2)可知原命題成立.

【小學(xué)歸納法的奧數(shù)計(jì)算試題】相關(guān)文章:

奧數(shù)計(jì)算試題答案解析:歸納法03-19

奧數(shù)面積計(jì)算試題與答案03-19

奧數(shù)試題03-29

小學(xué)奧數(shù)試題及答案03-19

小學(xué)奧數(shù)競賽試題02-26

小學(xué)奧數(shù)精選試題及答案06-12

小學(xué)奧數(shù)試題題目03-28

小學(xué)奧數(shù)幾何試題03-29

小學(xué)奧數(shù)試題及解析03-29

永昌县| 南安市| 灯塔市| 河池市| 永福县| 舟山市| 海南省| 马尔康县| 敦化市| 鹤峰县| 石景山区| 浮梁县| 上高县| 大化| 吉林市| 灵山县| 襄汾县| 荣成市| 昆明市| 哈巴河县| 文安县| 博野县| 武清区| 宜阳县| 瓦房店市| 鱼台县| 类乌齐县| 新平| 扬中市| 德庆县| 万山特区| 东城区| 云龙县| 剑川县| 肥东县| 虞城县| 呼伦贝尔市| 永宁县| 青铜峡市| 滁州市| 邵东县|